PLANAR GRAPH EMBEDDINGS AND STAT MECH

Richard Kenyon (Brown University)

In 2D stat mech models, appropriate graph embeddings are important

e.g. Bond percolation on \mathbb{Z}^2 .

$$p_c = \frac{1}{2}$$

What about unequal probabilities?

$$p^3 + 3p^2q - 3p^2 - 3pq + 1 = 0$$

 $\theta = \theta(p,q)$

critical if:

In 2D stat mech models, appropriate graph embeddings are important

Random walks/spanning trees BSST, LSW, Georgakopoulos Angel, Barlow, Gurel-Gurevich, Nachmias Hutchcroft, Peres	harmonic embedding, square tiling circle packing trapezoid tiling
Dimer models (Kenyon, Sheffield)	T-graphs
Ising model (Kenyon, Mercat, Smirnov)	K-graphs
FK (random cluster) model	isoradial graphs
bipolar orientations (Abrams, Kenyon)	area-1 rectangulations
Schnyder woods (Schnyder, , X. Sun, Watson)	Schnyder embedding
Random planar maps (KPZ, Duplantier, Miller, Sheffield)	conformal

- 1. T-graphs and dimers
- 2. Convex embeddings of a planar graph
- 3. Harmonic embeddings
- 4. Discrete analytic functions
- 5. Fixed-area rectangulations

Smith diagram of a planar network [BSST 1939] (with a harmonic function)

vertex = horizontal line voltage = y-coordinate edge = rectangle current = width conductance = aspect ratio (width/height) energy = area

Smith diagram of a planar network [BSST 1939] (with a harmonic function)

vertex = horizontal line voltage = y-coordinate edge = rectangle current = width conductance = aspect ratio (width/height) energy = area **Thm(Dehn 1903):** An $a \times b$ rectangle can be tiled with squares iff $a/b \in \mathbb{Q}$.

Thm(Dehn 1903): An $a \times b$ rectangle can be tiled with squares iff $a/b \in \mathbb{Q}$.

alternate proof

K is a signed adjacency matrix of an underlying planar graph...

Wednesday, May 11, 16

A *t*-graph in a polygon is a union of noncrossing line segments in which every endpoint lies on another segment, or on the boundary, or at a point where three or more segments meet, with one in each halfspace.

a t-graph with four segments

A t-graph is *generic* if no two endpoints are equal. Note: faces are convex. For generic t-graphs,

 $1 = \chi(\text{open disk}) = \#(\text{faces}) - \#(\text{segments}).$

local pictures:

Associated to a t-graph is a bipartite graph...

...which has dimer covers (when we remove all but one outer edge).

(follows from [K-Sheffield 2003])

Thm: The space of t-graphs with n segments, fixed boundary and fixed combinatorics is homeomorphic to \mathbb{R}^{2n} .

Global coordinates are biratio coordinates $\{X_i\}$.

At a degenerate vertex, biratios are defined by continuity:

Proof idea: Let K be a Kasteleyn matrix with face weights X.

Find diagonal matrices D_W, D_B such that

$$D_W K D_B \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} = 0$$
 except on boundary.
$$(1, \dots, 1) D_W K D_B = 0$$

Use maximum principle to show embedding.

There are a number of *special cases* where one restricts the set of biratios.

Special case 1. Convex embeddings of graphs

An embedding of a graph in \mathbb{R}^2 is *convex* if its faces are convex

Thm: The space of convex embeddings of G (with pinned boundary) is homeomorphic to \mathbb{R}^{2V} .

Proof: Take a nearby nondegenerate t-graph and set products of biratios around "vertices" to be 1. Show that any such assignment of biratios results in an embedding.

Note XYZ = 1

Proof: Take a nearby nondegenerate t-graph and set products of biratios around "vertices" to be 1. Show that any such assignment of biratios results in an embedding.

note that X, Y, Z are ratios of barycentric coordinates!

A natural probability measure on convex embeddings is obtained by choosing transition probabilities iid in $\{0 \le p, q, p + q \le 1\}$. Special case 2.

Product of Xs around both faces and vertices is 1.

One can show that these conditions correspond to *harmonic embeddings* (spring networks / resistor networks)

Random convex embedding

Random harmonic embedding

Conjecture: A random convex embedding does not have a scaling limit shape. Conjecture [Zeitouni]: A random convex embedding has a scaling limit shape. (would follow from CLT for RWRE)

Wednesday, May 11, 16

Q. Is there a natural probability measure on Homeo $(\mathbb{D}^2, \mathbb{D}^2)$?

Special case 3. discrete analytic functions (Fix exact shapes up to scale)

e.g. square tilings (all Xs equal to 1)

Discrete analytic functions

$$y_2 - y_1 = c(x_2 - x_1)$$

"discrete Cauchy-Riemann"

$$f_x = g_y$$
$$f_y = -g_x$$

Wednesday, May 11, 16

More generally K is a discrete version of $\partial_{\overline{z}}$

e.g. regular hexagons and equilateral triangles (all X's equal to 1.)

Rectangle tilings (product of adjacent Xs is 1)

(square young tableau limit shape)

Fixed areas:

Given a rectangle tiling, there is an "isotopic" rectangle tiling with prescribed areas.

$$x/y = 1$$

xy = 1/6

Thm [K-Abrams]

For every **bipolar orientation** of a planar graph, there is a unique Smith diagram with area-1 rectangles; that is, there is a unique choice of conductances so that the associated harmonic function has energies 1 and that orientation.

Bipolar orientation: Acyclic with exactly one source and sink (on outer boundary).

Wednesday, May 11, 16

A random bipolar orientation of a random graph:

thank you for your attention!

 $K: \mathbb{R}^W \to \mathbb{R}^B$

signed (weighted) adjacency matrix

Thm[Kasteleyn(1965)]:

$$\det K = \sum wt(m).$$

dimer covers m

Q. What is the geometry underlying K?

Wednesday, May 11, 16