PLANAR GRAPH EMBEDDINGSAND STAT MECH

Richard Kenyon (Brown University)

In 2D stat mech models, appropriate graph embeddings are important e.g. Bond percolation on \mathbb{Z}^{2}.

$$
p_{c}=\frac{1}{2}
$$

What about unequal probabilities?

$p^{3}+3 p^{2} q-3 p^{2}-3 p q+1=0$

$\theta=\theta(p, q)$

In 2D stat mech models, appropriate graph embeddings are important

Random walks/spanning trees BSST, LSW, Georgakopoulos Angel, Barlow, Gurel-Gurevich, Nachmias Hutchcroft, Peres	harmonic embedding, square tiling circle packing trapezoid tiling
Dimer models (Kenyon, Sheffield)	T-graphs
Ising model (Kenyon, Mercat, Smirnov)	K-graphs
FK (random cluster) model	isoradial graphs
bipolar orientations (Abrams, Kenyon)	area-1 rectangulations
Schnyder woods (Schnyder, , X. Sun, Watson)	Schnyder embedding
Random planar maps (KPZ, Duplantier, Miller, Sheffield)	

1. T-graphs and dimers
2. Convex embeddings of a planar graph
3. Harmonic embeddings
4. Discrete analytic functions
5. Fixed-area rectangulations

Smith diagram of a planar network [BSST 1939]

 (with a harmonic function)

$$
\begin{aligned}
\text { vertex } & =\text { horizontal line } \\
\text { voltage } & =y \text {-coordinate } \\
\text { edge } & =\text { rectangle } \\
\text { current } & =\text { width } \\
\text { conductance } & =\text { aspect ratio (width } / \text { height }) \\
\text { energy } & =\text { area }
\end{aligned}
$$

Smith diagram of a planar network [BSST 1939]

 (with a harmonic function)

$$
\begin{aligned}
\text { vertex } & =\text { horizontal line } \\
\text { voltage } & =y \text {-coordinate } \\
\text { edge } & =\text { rectangle } \\
\text { current } & =\text { width } \\
\text { conductance } & =\text { aspect ratio (width } / \text { height }) \\
\text { energy } & =\text { area }
\end{aligned}
$$

Thm(Dehn 1903): An $a \times b$ rectangle can be tiled with squares iff $a / b \in \mathbb{Q}$.

Thm(Dehn 1903): An $a \times b$ rectangle can be tiled with squares iff $a / b \in \mathbb{Q}$.

alternate proof

$$
\begin{array}{r}
a+d=1 \\
a+f-d=0 \\
a-b-f=0 \\
d+f-e=0 \\
b+c-f-e=0 \\
b-c=0
\end{array}
$$

$$
\left(\begin{array}{cccccc}
1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & -1 & 0 & 1 \\
1 & -1 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 1 & -1 & 1 \\
0 & 1 & 1 & 0 & -1 & -1 \\
0 & 1 & -1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c \\
d \\
e \\
f
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

$\operatorname{det} K=?$
K is a signed adjacency matrix of an underlying planar graph...

A t-graph in a polygon is a union of noncrossing line segments
in which every endpoint lies on another segment, or on the boundary, or at a point where three or more segments meet, with one in each halfspace.

a t-graph with four segments

A t-graph is generic if no two endpoints are equal.
Note: faces are convex.
For generic t-graphs,

$$
1=\chi(\text { open disk })=\#(\text { faces })-\#(\text { segments }) .
$$

local pictures:

Associated to a t-graph is a bipartite graph...

...which has dimer covers (when we remove all but one outer edge).

(follows from [K-Sheffield 2003])
Thm: The space of t-graphs with n segments, fixed boundary and fixed combinatorics is homeomorphic to $\mathbb{R}^{2 n}$.

Global coordinates are biratio coordinates $\left\{X_{i}\right\}$.

$$
X=\frac{a c}{b d}
$$

$X=\frac{a c e}{b d f}$

At a degenerate vertex, biratios are defined by continuity:

$$
X=\frac{c_{1} \sin \theta_{3}}{a_{1} \sin \theta_{2}} \quad Y=\frac{a_{2} \sin \theta_{1}}{b_{2} \sin \theta_{3}} \quad Z=\frac{b_{3} \sin \theta_{2}}{c_{3} \sin \theta_{1}}
$$

Proof idea: Let K be a Kasteleyn matrix with face weights X.
Find diagonal matrices D_{W}, D_{B} such that

$$
\left.\begin{array}{rl}
D_{W} K D_{B}\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right) & =0 \\
(1, \ldots, 1) D_{W} K D_{B} & =0
\end{array}\right\} \text { except on boundary. }
$$

Use maximum principle to show embedding.

$$
X=\frac{a c}{b d}
$$

There are a number of special cases where one restricts the set of biratios.

Special case 1. Convex embeddings of graphs An embedding of a graph in \mathbb{R}^{2} is convex if its faces are convex

Thm: The space of convex embeddings of G (with pinned boundary) is homeomorphic to $\mathbb{R}^{2 V}$.

Proof: Take a nearby nondegenerate t-graph and set products of biratios around "vertices" to be 1.

Show that any such assignment of biratios results in an embedding.

$$
X=\frac{c \sin \theta_{3}}{a \sin \theta_{2}} \quad Y=\frac{a \sin \theta_{1}}{b \sin \theta_{3}} \quad Z=\frac{b \sin \theta_{2}}{c \sin \theta_{1}}
$$

Note $X Y Z=1$

Proof: Take a nearby nondegenerate t-graph and set products of biratios around "vertices" to be 1.

Show that any such assignment of biratios results in an embedding.

$$
X=\frac{c \sin \theta_{3}}{a \sin \theta_{2}} \quad Y=\frac{a \sin \theta_{1}}{b \sin \theta_{3}} \quad Z=\frac{b \sin \theta_{2}}{c \sin \theta_{1}}
$$

Note $X Y Z=1$
note that X, Y, Z are ratios of barycentric coordinates!

A natural probability measure on convex embeddings is obtained by choosing transition probabilities iid in $\{0 \leq p, q, p+q \leq 1\}$.

Special case 2.
Product of $X \mathrm{~s}$ around both faces and vertices is 1.

One can show that these conditions correspond to harmonic embeddings (spring networks / resistor networks)

Random convex embedding

Random harmonic embedding

Conjecture: A random convex embedding does not have a scaling limit shape. Conjecture [Zeitouni]: A random convex embedding has a scaling limit shape. (would follow from CLT for RWRE)

Q. Is there a natural probability measure on $\operatorname{Homeo}\left(\mathbb{D}^{2}, \mathbb{D}^{2}\right)$?

Special case 3. discrete analytic functions (Fix exact shapes up to scale)
e.g. square tilings (all X s equal to 1)

Discrete analytic functions

"discrete Cauchy-Riemann"

$$
\begin{gathered}
f_{x}=g_{y} \\
f_{y}=-g_{x}
\end{gathered}
$$

More generally K is a discrete version of $\partial_{\bar{z}}$
e.g. regular hexagons and equilateral triangles (all X 's equal to 1.)

Rectangle tilings (product of adjacent $X \mathrm{~s}$ is 1)

(square young tableau limit shape)

Fixed areas:

Given a rectangle tiling, there is an "isotopic" rectangle tiling with prescribed areas.

$$
x / y=1
$$

$x y=1 / 6$

Thm [K-Abrams]

For every bipolar orientation of a planar graph, there is a unique Smith diagram with area- 1 rectangles; that is, there is a unique choice of conductances so that the associated harmonic function has energies 1 and that orientation.

Bipolar orientation: Acyclic with exactly one source and sink (on outer boundary).

A random bipolar orientation of a random graph:

thank you for your attention!

$$
K: \mathbb{R}^{W} \rightarrow \mathbb{R}^{B}
$$

signed (weighted) adjacency matrix

Thm [Kasteleyn(1965)]:

$$
\operatorname{det} K=\sum_{\text {dimer covers } m} w t(m)
$$

Q. What is the geometry underlying K ?

